Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Front Immunol ; 15: 1327437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550577

RESUMO

Introduction: T follicular (TFH) and peripheral helper (TPH) cells have been increasingly recognized as a pathogenic subset of CD4 T cells in systemic lupus erythematosus (SLE). The SLAM Associated Protein (SAP) regulates TFH and TPH function by binding to the co-stimulatory signaling lymphocyte activation molecule family (SLAMF) receptors that mediate T cell - B cell interactions. SAP and SLAMF are critical for TPH-dependent B cell maturation into autoantibody-producing plasma cells that characterize SLE pathogenesis. We hypothesized that SAP-expressing TPH cells are involved in the pathogenesis of lupus nephritis (LN). Methods: Peripheral blood mononuclear cells (PBMC) were isolated using density gradient separation from whole blood. Cells were stained for cell surface markers, followed by permeabilization and staining of intracellular SAP for spectral flow cytometry analysis. We also analyzed SAP expression from renal infiltrating LN T cells using the available single-cell RNA sequencing (scRNA seq) Accelerated Medicines Partnership (AMP) SLE dataset. Results: PBMC from 30 patients with SLE (34 ± 10 years old, 83% female), including 10 patients with LN, were analyzed. We found an increase in total SAP-positive CD4 and CD8 T cells in SLE compared with controls (55.5 ± 2.6 vs. 41.3 ± 3.4, p=0.007, and 52.5 ± 3.0 vs. 39.2 ± 2.8, p=0.007 respectively). In CD4 T cells, the highest SAP expression was in the TPH subset. The frequency of SAP+TPH in circulation correlated with disease activity; SLE patients with renal disease had higher levels of circulating SAP+TPH that remained significant after adjusting for age, sex, race, low complements, and elevated anti-dsDNA (p=0.014). scRNA-seq data of renal infiltrating T cells in LN identified SAP expression to localize to the TFH-like CD4 cluster and GZMK+ CD8 cluster. Increased SAP expression in LN was associated with the differential expression of SLAMF3 and SLAMF7 and granzyme K and EOMES. The existence of two predominant SAP-expressing subsets, the TFH-like CD4 T cells, and GZMK+ effector CD8 T cells, was verified using scRNA-seq data from a human transcriptomic atlas of fifteen major organs. Conclusion: The expansion of SAP-expressing T helper cells was associated with LN in our cohort and verified using scRNA-seq data of renal infiltrating T cells. Improved SLAM and SAP signaling understanding can identify new therapeutic targets in LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Nefrite Lúpica/metabolismo , Leucócitos Mononucleares/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
2.
J Allergy Clin Immunol ; 153(1): 256-264, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678575

RESUMO

BACKGROUND: The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE: We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS: Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS: HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS: HLH-related gene variants may be key components to the severity and refractoriness of HLHa.


Assuntos
Linfo-Histiocitose Hemofagocítica , Adulto , Humanos , Adolescente , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Alelos , Genótipo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
3.
BMC Cancer ; 23(1): 1005, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858067

RESUMO

BACKGROUND: SH2 domain containing 1A (SH2D1A) expression has been linked to cancer progression. However, the functions of SH2D1A in hepatocellular carcinoma (HCC) have not been reported. METHODS: The effects of SH2D1A on the proliferation, migration, and invasion of HCC cells and the related pathways were re-explored in cell models with SH2D1A overexpression using the CCK-8, migration and invasion assays and western blotting. The functions and mechanisms of genes co-expressed with SH2D1A were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The relationship between SH2D1A expression and immune microenvironment features in HCC was explored. RESULTS: Elevated SH2D1A expression promoted cell proliferation, migration, and invasion, which was related to the overexpression of p-Nf-κB and BCL2A1 protein levels in HCC. SH2D1A expression was related to the immune, stromal, and ESTIMATE scores, and the abundance of immune cells, such as B cells, CD8+ T cells, and T cells. SH2D1A expression was significantly related to the expression of immune cell markers, such as PDCD1, CD8A, and CTLA4 in HCC. CONCLUSION: SH2D1A overexpression was found to promote cell growth and metastasis via the Nf-κB signaling pathway and may be related to the immune microenvironment in HCC. The findings indicate that SH2D1A can function as a biomarker in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos , Biologia Computacional , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Processos Neoplásicos , NF-kappa B , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
Turk J Pediatr ; 65(4): 603-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661675

RESUMO

BACKGROUND: We aimed to analyze the levels and associations of SH2 domain-containing protein 1A (SH2D1A), immunoglobulins and T lymphocyte (TL) subsets in children with Epstein-Barr virus (EBV) infections. METHODS: Sixty children with EBV infections admitted from January 2019 to January 2022 were selected, including 29 cases of infectious mononucleosis (IM group) and 31 cases of chronic active EBV infections (CAEBV group). Another 42 healthy children undergoing physical examination in the same period were selected as a control group. Their changes in SH2D1A, immunoglobulins and TL subsets (CD3+, CD4+ and CD8+) were compared. RESULTS: The levels of CD3+, CD4+ and CD8+ in the IM group were higher than those of the control group (P < 0.05), while they were lower in the CAEBV group than those of the control and IM groups (P < 0.05). The levels of SH2D1A, signaling lymphocyte activation molecule (SLAM) and SLAM-associated protein (SAP) were significantly higher in the IM group than those in the control and CAEBV groups (P < 0.05). The CAEBV group had decreased protein expressions of SLAM and SAP compared with those of the IM group. SH2D1A was positively correlated with immunoglobulin A, immunoglobulin G and TL subsets (CD3+, CD4+ and CD8+) (P < 0.05). CONCLUSIONS: Detecting SH2D1A, immunoglobulins and TLs contributes to the diagnosis and differentiation of IM and CAEBV.


Assuntos
Infecções por Vírus Epstein-Barr , Criança , Humanos , Infecções por Vírus Epstein-Barr/complicações , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Domínios de Homologia de src , Herpesvirus Humano 4 , Imunoglobulina G , Subpopulações de Linfócitos T
5.
Medicine (Baltimore) ; 101(41): e30951, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36254040

RESUMO

BACKGROUND: X-linked lymphoproliferative syndrome (XLP) is a rare X-linked recessive inborn errors of immunity. The pathogenesis of XLP might be related to phophatidylinositol-3-kinase (PI3K)-associated pathways but insight details remain unclear. This study was to study an infant XLP-1 case caused by a mutation in SH2D1A gene, investigate the structural and functional alteration of mutant SAP protein, and explore the potential role of PI3K-associated pathways in the progression of XLP-1. METHODS: The proband's condition was monitored by laboratory and imagological examinations. Whole exome sequencing and Sanger sequencing were performed to detect the genetic disorder. Bioinformatics tools including PolyPhen-2, SWISS-MODEL and SWISS-PDB Viewer were used to predict the pathogenicity and estimate structural change of mutant protein. Flow cytometry was used to investigate expression of SAP and PI3K-associated proteins. RESULTS: The proband was diagnosed with XLP-1 caused by a hemizygous mutation c.96G > T in SH2D1A gene resulting in a missense substitution of Arginine to Serine at the site of amino acid 32 (p.R32S). The mutant protein contained a hydrogen bond turnover at the site of mutation and was predicted to be highly pathogenic. Expression of SH2D1A encoded protein SAP was downregulated in proband. The PI3K-AKT-mTOR signaling pathway was fully activated in XLP-1 patients, but it was inactive or only partially activated in healthy people or HLH patients. CONCLUSIONS: The mutation c.96G > T in SH2D1A gene caused structural and functional changes in the SAP protein, resulting in XLP-1. The PI3K-AKT-mTOR signaling pathway may play a role in XLP-1 pathogenesis.


Assuntos
Transtornos Linfoproliferativos , Fosfatidilinositol 3-Quinases , Aminoácidos , Arginina , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transtornos Linfoproliferativos/diagnóstico , Proteínas Mutantes , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Serina-Treonina Quinases TOR/genética
6.
Cell Death Dis ; 13(10): 892, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36270981

RESUMO

X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Animais , Humanos , Camundongos , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/metabolismo , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linfócitos B
7.
J Allergy Clin Immunol ; 150(6): 1507-1516.e7, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35839843

RESUMO

BACKGROUND: X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency arising from SH2D1A mutations leading to loss of SLAM-associated protein (SAP). SAP is an intracellular adaptor protein that binds to SLAM family receptors and is expressed in specific lymphoid lineages. In T cells, SAP relays activatory signals from the T-cell receptor but in its absence SH2 containing protein tyrosine phosphase-1 (SHP1), SH2 containing protein tyrosine phosphase-2 (SHP2), and SH2 containing inositol 5'-phosphatase proteins (SHIP) induce T-cell inhibitory signals leading to abnormal T-cell responses. This results in severe clinical manifestations including immune dysregulation, dysgammaglobulinemia, lymphoma, and hemophagocytic lymphohistiocytosis. Current treatment relies on supportive therapies including immunoglobulin replacement and symptom-directed therapy, with hematopoietic stem cell transplant offering the only curative option. OBJECTIVES: As most XLP symptoms are due to defective T-cell function, this study investigated whether inhibition of SHP2 can restore cellular function in the absence of SAP. METHODS: Healthy donor and XLP patient T cells were activated with anti-CD3/CD28 in T-cell media supplemented with a SHP2 inhibitor (RMC-4550 in vitro for 24 hours) and functional assays were performed to assess follicular TH (TFH) cell function, CD8 cytotoxicity, and sensitivity to restimulation-induced cell death. Additionally, SAP-deficient (SAPy/-) mice were treated with RMC-4550 before T-cell mediated challenge with 4-hydroxy-3-nitrophenylacetly conjugated chicken gammaglobulin and subsequent assessment of humoral immunity analyzing TFH cell population, germinal center formation, and antigen-dependent immunoglobulin secretion. RESULTS: This study shows that the use of RMC-4550 restores T-cell function in XLP patient cells and a SAPy/- model, demonstrating restoration of TFH cell function through immunoglobulin and cytokine secretion analysis alongside rescue of cytotoxicity and restimulation-induced cell death. CONCLUSIONS: These data suggest that SHP2 inhibitors could offer a novel and effective targeted treatment approach for patients with XLP.


Assuntos
Imunoglobulinas , Linfócitos T , Animais , Camundongos , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Morte Celular
8.
Br J Haematol ; 198(1): 151-154, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35355252

RESUMO

X-linked lymphoproliferative disease (XLP1) is a rare primary immunodeficiency that usually presents in early childhood. Patients with XLP1 have been reported to have absent NKT cells, and it has been suggested that this can be diagnostic for the disorder. Whilst NKT frequency in adults is variable, little is known about their frequency in children. Therefore, we established a paediatric reference range for these cells. In contrast to previous reports, in our cohort of XLP1 patients, NKT cell numbers were found to be variable, and we would advise against using the finding of NKT cells to exclude a diagnosis of XLP1.


Assuntos
Transtornos Linfoproliferativos , Células T Matadoras Naturais , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Transtornos Linfoproliferativos/diagnóstico , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária
9.
Mol Genet Genomic Med ; 10(3): e1873, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092357

RESUMO

BACKGROUND: X-linked lymphoproliferative syndrome type 1 (XLP1) is a rare primary immunodeficiency disorder characterized by severe immune dysregulation often after viral infection. It is caused by hemizygous mutations in the X-linked SH2D1A gene. People with XLP1 have complex and variable phenotype manifestations as EBV-driven severe or fulminant mononucleosis, hemophagocytic lymphohistiocytosis (EBV-HLH), dysgammaglobulinemia, and B-cell lymphoma. METHODS: Immunological analyses, clinical laboratory testing, and whole exome sequencing (WES) were performed to help the disease diagnosis for the patient with severe immune dysregulation. Routine and extended WES analysis pipelines were applied to explore candidates. A complex genomic structural variation in SH2D1A was detected and verified by Inverse-PCR, Gap-PCR, and RT-PCR. RESULTS: Here we reported that a five-year-old male patient manifested with EBV-HLH, recurrent infection by severe immune dysregulation, and successfully managed with HSCT. He finally established precise disease diagnosis as XLP1 caused by a complex genomic structural variation in SH2D1A (NC_000023.11:g. [124,350,560_124365777del; 124,365,777_124365917inv; 124,365,911_124365916del]). The mother and grandmother of the proband were confirmed to be carriers. The complex variant resulted in the exon 2 skipping and was predicted to generate a prematurely truncated protein. CONCLUSION: The complex structural variant combined with paracentric inversion and large size deletions was first reported in XLP1 cases. It is considered to be pathogenic based on the truncation of the mRNA sequence and cosegregation with the disease in three-generation pedigree analysis. This finding has expanded the known XLP-related mutation spectrum in Chinese patients and indicated remarkable effects on the early diagnosis and therapeutic implication using proper molecular testing techniques.


Assuntos
Transtornos Linfoproliferativos , Pré-Escolar , Éxons , Humanos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Masculino , Mutação , Linhagem , RNA Mensageiro/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética
11.
J Immunol ; 207(3): 849-859, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301848

RESUMO

A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Autoimunidade , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Variação Genética , Humanos , Tolerância Imunológica , Memória Imunológica , Ativação Linfocitária/genética , Mutação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética
12.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072296

RESUMO

Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.


Assuntos
Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Suscetibilidade a Doenças , Genes Ligados ao Cromossomo X , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/metabolismo , Animais , Biomarcadores , Diacilglicerol Quinase/química , Ativação Enzimática , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/diagnóstico , Ligação Proteica , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
Front Immunol ; 12: 654839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936082

RESUMO

T cell activation is the result of the integration of signals across the T cell receptor and adjacent co-receptors. The signaling lymphocyte activation molecules (SLAM) family are transmembrane co-receptors that modulate antigen driven T cell responses. Signal transduction downstream of the SLAM receptor is mediated by the adaptor protein SLAM Associated Protein (SAP), a small intracellular protein with a single SH2 binding domain that can recruit tyrosine kinases as well as shield phosphorylated sites from dephosphorylation. Balanced SLAM-SAP signaling within T cells is required for healthy immunity, with deficiency or overexpression prompting autoimmune diseases. Better understanding of the molecular pathways involved in the intracellular signaling downstream of SLAM could provide treatment targets for these autoimmune diseases.


Assuntos
Autoimunidade , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Comunicação Celular/imunologia , Suscetibilidade a Doenças , Genes Ligados ao Cromossomo X , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Ligação Proteica , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
14.
J Immunol Res ; 2021: 5548463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987447

RESUMO

Signaling lymphocytic activation molecule (SLAM) and SLAM-associated protein (SAP) play important role in inflammatory and autoimmune diseases. Our study is aimed at detecting the expression of SLAM and SAP in patients with Graves' disease (GD) and analyzing the effect of SLAM/SAP on circulating blood CD4+CXCR5+Foxp3+ follicular regulatory T (Tfr) cells. The level of SAP in CD4+CXCR5+ T cells and the level of SLAM on CD19+ B cells were significantly increased in the patients with GD, but no significant difference in the level of SLAM on CD4+CXCR5+ T cells was observed between the patients with GD and the healthy controls. A decrease in the percentage of Foxp3+ cells in CD4+CXCR5+ T cells was observed following anti-SLAM treatment, but the percentages of IFN-γ + cells, IL-4+ cells, and IL-17+ cells showed no obvious differences. The proportion of circulating Tfr cells was decreased in the patients with GD, and the proportion of circulating Tfr cells had a negative correlation with the level of SAP in CD4+CXCR5+ T cells and the levels of autoantibodies in the serum of the patients with GD. Our results suggested that the SLAM/SAP signaling pathway is involved in the decrease of circulating Tfr cells in Graves' disease.


Assuntos
Doença de Graves/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T Reguladores/imunologia , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Feminino , Doença de Graves/sangue , Voluntários Saudáveis , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/análise , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/análise , Linfócitos T Reguladores/metabolismo
16.
J Pediatr Hematol Oncol ; 43(8): e1210-e1213, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448720

RESUMO

X-linked lymphoproliferative disease type 1 (XLP1) is a primary immunodeficiency disorder caused by pathogenic variants in the SH2D1A gene (SH2 domain containing protein 1A). Patients with XLP1 may present acutely with fulminant infectious mononucleosis, hemophagocytic lymphohistiocytosis, and/or B-cell non-Hodgkin lymphoma (B-NHL). We report a boy who developed 2 clonally distinct B-NHL 4 years apart and was found to have previously unrecognized XLP1. The report highlights the importance of clonal analysis and XLP1 testing in males with presumed late recurrences of B-NHL, and the role of allogeneic stem cell transplant (allo-SCT) in XLP1 patients and their affected male relatives.


Assuntos
Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfoma de Células B/patologia , Transtornos Linfoproliferativos/diagnóstico , Mutação , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Linfoma de Células B/genética , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/terapia , Masculino , Linhagem , Prognóstico
17.
Front Immunol ; 12: 747738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987501

RESUMO

X-linked lymphoproliferative disease (XLP1) is a combined immunodeficiency characterized by severe immune dysregulation caused by mutations in the SH2D1A/SAP gene. Loss or dysfunction of SH2D1A is associated with the inability in clearing Epstein-Barr-Virus (EBV) infections. Clinical manifestation is diverse and ranges from life-threatening hemophagocytic lymphohistiocytosis (HLH) and fulminant infectious mononucleosis (FIM) to lymphoma and antibody deficiency. Rare manifestations include aplastic anemia, chronic gastritis and vasculitis. Herein, we describe the case of a previously healthy eight-year old boy diagnosed with XLP1 presenting with acute non-EBV acute meningoencephalitis with thrombotic occlusive vasculopathy. The patient developed multiple cerebral aneurysms leading to repeated intracerebral hemorrhage and severe cerebral damage. Immunological examination was initiated after development of a susceptibility to infections with recurrent bronchitis and one episode of severe pneumonia and showed antibody deficiency with pronounced IgG1-3-4 subclass deficiency. We could identify a novel hemizygous SH2D1A point mutation affecting the start codon. Basal levels of SAP protein seemed to be detectable in CD8+ and CD4+ T- and CD56+ NK-cells of the patient what indicated an incomplete absence of SAP. In conclusion, we could demonstrate a novel SH2D1A mutation leading to deficient SAP protein expression and a rare clinical phenotype of non-EBV associated acute meningoencephalitis with thrombotic occlusive vasculopathy.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Transtornos Linfoproliferativos/imunologia , Meningoencefalite/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/imunologia , Trombose/imunologia , Criança , Infecções por Vírus Epstein-Barr/diagnóstico , Humanos , Transtornos Linfoproliferativos/diagnóstico , Masculino , Meningoencefalite/diagnóstico , Mutação , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Trombose/diagnóstico
18.
Cell Mol Immunol ; 18(1): 194-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659245

RESUMO

The adaptive immune response relies on specific apoptotic programs to maintain homeostasis. Conventional effector T cell (Tcon) expansion is constrained by both forkhead box P3 (FOXP3)+-regulatory T cells (Tregs) and restimulation-induced cell death (RICD), a propriocidal apoptosis pathway triggered by repeated stimulation through the T-cell receptor (TCR). Constitutive FOXP3 expression protects Tregs from RICD by suppressing SLAM-associated protein (SAP), a key adaptor protein that amplifies TCR signaling strength. The role of transient FOXP3 induction in activated human CD4 and CD8 Tcons remains unresolved, but its expression is inversely correlated with acquired RICD sensitivity. Here, we describe a novel role for FOXP3 in protecting human Tcons from premature RICD during expansion. Unlike FOXP3-mediated protection from RICD in Tregs, FOXP3 protects Tcons through a distinct mechanism requiring de novo transcription that does not require SAP suppression. Transcriptome profiling and functional analyses of expanding Tcons revealed that FOXP3 enhances expression of the SLAM family receptor CD48, which in turn sustains basal autophagy and suppresses pro-apoptotic p53 signaling. Both CD48 and FOXP3 expression reduced p53 accumulation upon TCR restimulation. Furthermore, silencing FOXP3 expression or blocking CD48 decreased the mitochondrial membrane potential in expanding Tcons with a concomitant reduction in basal autophagy. Our findings suggest that FOXP3 governs a distinct transcriptional program in early-stage effector Tcons that maintains RICD resistance via CD48-dependent protective autophagy and p53 suppression.


Assuntos
Antígeno CD48/metabolismo , Morte Celular , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T Reguladores/imunologia , Apoptose , Autofagia , Antígeno CD48/genética , Fatores de Transcrição Forkhead/genética , Humanos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
J Immunol ; 205(12): 3263-3276, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199538

RESUMO

Signaling lymphocytic activation molecule-associated protein (SAP), a critical intracellular signaling molecule for T-B lymphocyte interactions, drives T follicular helper (Tfh) cell development in germinal centers (GCs). High-affinity islet autoantibodies predict type 1 diabetes (T1D) but do not cause ß cell destruction. This paradox intimates Tfh cells as key pathologic effectors, consistent with an observed Tfh signature in T1D. To understand how fully developed Tfh (GC Tfh) contribute to different autoimmune processes, we investigated the role of SAP in T1D and autoantibody-mediated arthritis. Whereas spontaneous arthritis depended on SAP in the autoantibody-mediated K/BxN model, organized insulitis and diabetes onset were unabated, despite a blocked anti-insulin vaccine response in SAP-deficient NOD mice. GC Tfh and GC B cell development were blocked by loss of SAP in K/BxN mice. In contrast, although GC B cell formation was markedly reduced in SAP-deficient NOD mice, T cells with a GC Tfh phenotype were found at disease sites. CXCR3+ CCR6- (Tfh1) subset bias was observed among GC Tfh cells infiltrating the pancreas of NOD mice, which was enhanced by loss of SAP NOD T cells override SAP requirement to undergo activation and proliferation in response to Ag presentation, demonstrating the potential for productive cognate T-B lymphocyte interactions in T1D-prone mice. We find that SAP is essential when autoantibody-driven immune complexes promote inflammation but is not required for effective organ-specific autoimmune attack. Thus, Tfh induced in classic GC reactions are dispensable for T1D, but the autoimmune process in the NOD model retains pathogenic Tfh without SAP.


Assuntos
Linfócitos B/imunologia , Comunicação Celular/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/imunologia , Células Th1/imunologia , Animais , Autoanticorpos/genética , Autoanticorpos/imunologia , Linfócitos B/patologia , Comunicação Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Células Th1/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...